

BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

PERIODIC-TEST-1 2025-26

CHEMISTRY (043) Answer Key

Class: XII

Date: 30/06/2025

Admission No.:

Duration: 1 Hr

Max. Marks: 25

Roll No.:

General Instructions:

- (1) There are 13 questions in all. All questions are compulsory.
- (2) This question paper has three sections: Section A, Section B and Section C.
- (3) All the sections are compulsory.
- (4) Section A contains five questions of 1 mark each, Section B contains four questions of two marks each, Section C contains four questions of three marks each.
- (5) There is no overall choice. Use of calculators is not allowed.

SECTION-A

- 1. (b) twice.
- 2. (a) 50 M
- 3. (b) 130 gram
- 4. (a) 38%
- 5. (b) mol lit⁻¹ sec⁻¹

SECTION - B

6. (i) It is the sum of powers of molar concentrations of reacting species in the rate equation of the reaction.

2

- (ii) the number of particles participated in a chemical reaction is known is molecularity.
- 7. (a) 3F
- (b) 2F

2

$$8. \ Ag^+/Ag = 0.80 \ V, \ Cu^{2+}/Cu = 0.34 \ V, \ Fe^{2+}/Fe = -0.44 \ V. \ Cr^{3+}/Cr = -0.74 \ V, Mg^{2+}/Mg = -2.37 \ V$$

$$K^{+}/K = -2.93 \text{ V},$$

9. Molarity : It is the number of moles of solute dissolved in 1 litre of solution. It is temperature dependent. $\omega \times 1000$ mol.mass $\times V$

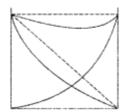
Molality: It is the number of moles of solute dissolved in 1 kg of the solvent.

For very dilute solution, the factor $MM_2/1000\ \text{can}$ be neglected in comparison to 1.

Hence molality will be same to molarity when density d = 1.

Molality is independent of temperature, whereas molarity is a function of temperature because volume depends on temperature and mass does not.

. No effect of temperature on molality


2

SECTION C

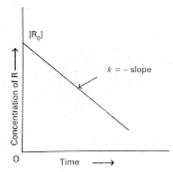
10. Non-ideal solutions exhibit either positive or negative deviations from Raoult's law. What are these deviations and why are they caused? Explain with one example for each type. (Delhi 2010)

Non-ideal solutions exhibit Negative deviation from Raoult's law: For any composition of the non-ideal solution, the partial vapour pressure of each component and total vapour pressure of the solution is less than expected from Raoult's law. Such solutions show negative deviation.

Example: Mixture of CHCl₃ and acetone.

Answer:

$$x_1 = 0$$
 Mole fraction $x_1 = 1$
 $x_2 = 1$ $x_1 \rightarrow x_2 = 0$
 $\leftarrow x_2$


 $Non-ideal\ solutions\ show\ positive\ deviations\ from\ Raoult's\ law\ on\ mixing\ of\ two\ volatile\ components\ of\ the\ solution.$

Example: A Mixture of acetone and benzene solutions show positive deviation,

11. (a) For a reaction $A + B \rightarrow P$, the rate law is given by Rate = $k[A] [B]^2$

(b)
$$t_{\frac{1}{2}} = \frac{0.693}{k} t_{\frac{1}{2}} = 30 \text{ minutes } k = \frac{0.693}{30} \text{ min}^{-1}$$

 $k = 0.0231 \text{ min}^{-1}$
 $k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$
 $t = \frac{2.303}{0.0231} \log \frac{100}{10}$ $t = \frac{2.303}{0.0231} \text{ min}$
 $t = 99.7 \text{ min}$

12. (a)

Variation in the concentration vs time plot for a zero order reaction

- (b) Explain Rate Law = $K [A]^x [B]^y$ and explanation
- 13. emf of the cell Zn/Zn $^{2+}(0.1M)$ II Cd^{2+} (0.01M)/Cd at 298K

$$E^{0} = E^{0}_{Zn}^{2+}/_{Zn} = -0.76 - E^{0}_{Cd}^{2+}/_{Cd} = -0.40 V = 1.10V$$

$$E_{Cell} = \ E^0_{cell} - 0.059/2 \ log \ 0.1/0.01$$

Ecell =
$$1.10 - 0.03 = 1.07V$$

-----ALL THE BEST-----